文本描述
厌氧氨氧化工艺是高效、经济、节能的新型生物脱氮技术。该工艺是微生物 学和环境工程领域的重大发现,自问世以来就受到了高度关注。然而,该工艺的 实际应用亟需突破特殊环境(如低温)和水质(如高盐度)条件导致的运行障碍。 本文考察了低温(<25。C)和高盐度对厌氧氨氧化工艺运行性能的影响,试验了低 温和高盐度条件下的控制技术。主要结论如下: (1)揭示了厌氧氨氧化的启动性能,关注了以常温保藏的厌氧氨氧化污泥作 为接种污泥快速启动厌氧氨氧化工艺的高效性,讨论了厌氧氨氧化性能提高过程 中出现的两次污泥上浮的现象和原因。第一次污泥上浮,污泥形态多为絮状,上 浮原因可能是较大的气泡占据了气体通道,污泥上浮现象可以通过缩短水力停留 时间(HRT)消除;第二次污泥上浮,上浮污泥多为大颗粒污泥,污泥上浮的原 因多为颗粒内部基质匮乏,造成较大空洞,污泥密度下降。因此为了维持反应器 的平稳运行,需将反应器内污泥粒径控制在合适范围。 (2)揭示了低温对厌氧氨氧化工艺的影响,提出了相应的控制技术。试验发 现,以常温保藏厌氧氨氧化污泥为接种污泥的反应器对温度变化的适应能力较 强,试验测得的活化能为39.5 kJ_mor】。随着温度由35°C逐步降低至I5。C,厌氧 氨氧化活性也逐步减小(由6.12至2.05 mgN^VSSf1)。在温度冲击下,厌氧 氨氧化会逐步适应低温环境。菌种流加调控策略可以有效缓解低温对厌氧氨氧化 工艺的抑制作用,每3d流加25ml高效厌氧氨氧化污泥,其总氮去除速率(NRR) 可以达到 6.25士】.51 kg m3-d-',高于对照反应器(NRR 为 5.40±0.59 kg.m-3.(^ )。 经优化,甜菜碱添加策略也可有效改善厌氧氨氧化工艺的运行性能,当温度为 9.2士0.5°C, NLR 为 13.32士0.50 kg^m+cT1 时,添加 0.1 mmol-L1 甜菜碱后反应器的 NRR 为 5.94±0.79kg.m-3.cfi,高于对照反应器(NRR 5.75±0.61 kgm3 d')。 (3)揭示了高盐度对厌氧氨氧化的短期和长期效应,考察了长期运行的控制 技术。釆用批次试验,研究了盐度对厌氧氨氧化反应的短期影响。结果表明,不 同类型的无机盐对厌氧氨氧化菌的抑制程度不一,相同摩尔浓度下抑制程度为 Na2S04〉KCI〉NaCI。发现渗透压对厌氧氨氧化活性的半抑制值为1.24MPa。低 浓度的无机盐(盐度」Og.L^NaCl)可以激活厌氧氨氧化活性,Sg.L^NaCl作用 下,厌氧氨氧化菌活性(比厌氧氨氧化活性,SAA)提高了 49%;高浓度的盐会 杭州师范大学硕士学位tf:文 遞 抑制厌氧氨氧化活性,当盐度为50 g-L 'NaCI时SAA降低了 83%.采用盐度冲 击试验,考察了盐度突增对厌氧氨氧化工艺的短期影响。试验发现,盐度冲击下 的厌氧氨氧化工艺运行可以分为敏感期、暂时稳定期和恢复期。低浓度盐度冲击 下厌氧氨氧化工艺性能较为稳定。经多次冲击后,厌氧氨氧化工艺出现了一定的 耐受性,即使在60g L_丨NaCl冲击后,厌氧氨氧化菌仍具有活性,SAA为3.55 mgfVSS-h人菌种流加可以提高厌氧氨氧化工艺在高盐下的运行性能,甜菜碱 添加仍然面临添加量的优化问题,需要进一步研究。 (4 )揭示了温度和盐度对厌氧氨氧化的共同作用。在盐浓度小于10 g.I^NaCl 的情况下,温度大于25°C时,两者的共同作用对厌氧氨氧化活性影响较小。甚 至在盐浓度小于]0gvL]Naa的情况下,温度保持在最适温度35°C时,厌氧氨氧 化活性有所提高。低至15°C的温度,和高至3(^丄_、冗1的盐度对厌氧氨氧化活 性都有强烈的抑制作用。低温和盐度的共同作用不能用简单的作用类型加以概 括。 关键词:厌氧氨氧化;工艺性能;低温;盐度;菌种流加;甜菜碱 ]]1 杭州师范人学硕士学份论 Abstract Abstract Anaerobic ammonium oxidation (Anammox) process is a novel, and energy efficient biological nitrogen removal technology. One of the major challenges in developing Anammox process is the treatment with wastewater in which exist complicated compositions(high salinity) and environmental conditions(low temperature). In order to perfect the full-scale application of Anammox process, the effects of low temperature( < 25°C) and high saline on Anammox process and the corresponding control strategies were studied in this investigation. The conclusions are as follows: (1) The performance of Anammox starting-up period was investigated. The reactor seeded with Anammox sludge by ambient temperature preservedand the start-up periodonly lasted for 4 days. During the operation of Anammox, sludge floatation turned up twice. First sludge floatation happened when sludge in flocculent condition, then by shortening (HRT),this phenomenon disappeared. Granular sludge floatation came out, due to the inanition inside of granular. To maintain the stability of Anammox process, the appropriate particle size is needed, (2) The effects of low temperature on Anammox process and corresponding control strategies were studied in this investigation. It was found that, Seeded with Anammox sludge by ambient temperature preserved, the reactor showed to be more adaptation to low temperaturewith activation energy of 39.5kJ *mol_1. The SAA were decreased with decreased temperature, when temperature reduced from 35 to 15°C, SAA decreased from 6.12 to 2-05 mgN-g^ySS-h1. After several times of temperature shocks, Anammox bacteria slowly adapted to low temperature and the effluent of reactor became stable. Sequential biocatalyst addition was used to relieve the inhibition of low temperature on Anammox. With 25 ml high rate Anammox sludge addition every three days, NRR 3 1 was increased as high as 6.25士】.51 kg*m -d , comapared with the NRR of the control 3 1 ... was approximately 5.40土0.59 kg m *d . The appropriate glycine betaine addition could promote the performance of Anammox. When under the temputure of 9.2士0.51, NRR of the reactor with 0.1 mmoi-L'1 glycine betaine addition was 杭州师范大学硕士学位报告 Abstract 5.94士0.79 kg-m3 d3. increased with 4% compared with the control. (4) The effects of salinity on Anammox process and corresponding control strategies were studied in this investigation. Batch tests were applied to study the effects of salinity on Anammox and feasibility of glycine betaine addition for alleviating high salinity inhibition was investigated. The results indicated that different types of salt inhibited Anammox with different degrees. When under the same molar concentration, the inhibitiondegrees as follow: Na2S04 > KC1 > NaCl. Meanwhile the 50% inhibiting concentration of osmotic pressure on Anammox was ] .24Mpa. The most important factor affected Anammox was the spices of iron which led to different Anammox activity. Low concentration of salt (NaCl S】0 g'L.1) could promote Anammox activity,thespecific Anammox activity (SAA) increased by 49% under 5 g-L' NaCl.While high salt concentration would reduce the activity of Anammox. When NaCl concentration was upper to 50 g-L1, it resulted in a low activity in Anammox. After a 60 g I1 NaC】 shock, the SAA was 3.55 mg-g'VSS-h1. The response to the shock loading can be divided into three stages: a sensitive period,an interim stable period and a recovery period. The performance was more stable at low-concentration NaCl shocks. Sequential biocatalyst addition can promote the performance of Anammox under high salinity environment. (5) The combine effects of salinity and low temperature on Anammox process was studied in this investigation Under lower than 10 g L^NaCl with temperature higher than 25 °C, the combine effects of those two factors on Anammox was slight. With temperature maintained as 35 °C, SAA increased. While as low as 15。C and higher as 30 g L^NaCl would inhibit the SAA serious. Keywords: Anaerobic ammonium oxidation (Anammox); Process performance; Low temperature; Salinity; Sequential biocatalyst addition; Glycine betaine v 杭州师范人学硕士学位tf: 脑 目录 ■ I 翻 1] Abstract IV V] 1 引a 1 ].]氮素污染及危害...... 1.2废水生物脱氮工艺 1.2.1传统生物脱氮工艺 1.2.2新型±物脱氮工£ 2 1.3厌氧氨氧化工艺 3 1.3.1厌氧氨氧化原理 3 1.3.2厌氧氨氧化工艺的性能与控制 5 1.3.3厌氧氨氧化工艺的应用及其挑战 7 1.4本课题研究的目的、意义及内容 8 2.厌氧氨氧化工艺的启动特性与控制技术 10 2.1概述 10 2.2材料和方法 10 2.2.1试验装置 10 2.2.2接种污泥 10 2.2.3试验废水 11 2.2.4测定项方法 11 2.3 12 2.3.1厌氧氨氧化工艺的启动特征 12 2.3.2厌氧氨氧化工艺的性能优化 14 杭州师范大学硕士学位报告 [Li 2.3.3厌氧氨氧化工艺的失稳与恢复 15 2.4分析与讨论 19 2.4.】厌氧氨氧化工艺的启动特性 19 2.4.2厌氧氨氧化工艺的性能优化 20 2.4.3厌氧氨氧化工艺的维稳 20 2.5小结 21 3低温下厌氧氨氧化工艺的工艺特性与控制技术 23 3.1 觀 23 3.2材料方法 23 3.2.1接种污泥 23 3.2.2试验装置 23 3.2.3试验废水 24 3.2.4测定项目与方法 24 3.3 n 25 3.3.1低温对厌氧氨氧化的短期效应 25 3.3.2温度冲击对厌氧氨氧化的影响 27 3.3.3低温对厌氧氨氧化工艺运行性能的影响 29 3.3.4菌种流加调控策略的有效性 30 3.3.5甜菜碱添加调