文本描述
I 摘要 随着化石燃料的日益枯竭,可再生能源以其清洁环保和可持续利用等特性成 为研究热点。太阳能、风能以及水电等可再生能源生产具有不稳定性,在资源丰 富而终端消耗低谷时,因无法消纳不得不弃用。解决可再生能源发电消纳的其中 一个方案是将多余的电力转换为氢气作为燃料储存和使用,这不仅提高了能源的 清洁性又保障了能源利用的稳定性。但是目前现有终端用户燃具多是为天然气以 及液化石油气为基础而设计,氢气直接作为燃料供应则需要更换燃气用具并且要 求敷设氢气输送管道,导致使用成本太高。由于天然气正处蓬勃发展的阶段,世 界上已建成天然气管道数量庞大,其运输和承载能力巨大,因此将氢气掺入现有 的天然气管网加以利用不失为一种较好的过渡方案。为研究天然气-氢气掺混配送 及使用的可行性,本文对天然气管网掺氢工况下的输配系统安全性、燃具燃烧稳 定性、管网输送能力等方面进行了理论、实验和模拟分析。主要研究内容及结论 如下, ① 天然气掺氢气的互换性分析。利用华白数、燃烧势、A.G.A指数和韦弗指 数进行互换性判定,加以爆炸极限计算、扩散性对比进行安全性分析。结果表明 在甲烷当中掺混氢气的体积百分比小于24%时,掺混气与天然气基准气具有互换 性。 ② 设计立管实验,验证天然气-氢气掺混气于立管静置后,因密度不同情况的 分层现象。测定和比较立管中不同高度甲烷与氢气比值在静置前后数值变化,实 验结果显示前后比值相差甚小,表明在实验条件下立管中掺混气不会发生分层现 象。 ③ 设计燃烧实验,测试天然气灶具掺氢燃烧时的稳定性及热工性能。比较了 灶前压力为1kPa、2kPa、3kPa工况下甲烷掺混氢气体积百分数5%、10%、15%、 20%时的燃烧特性,分析了掺氢对热负荷、灶具热效率、一次空气系数及烟气成分 的影响。实验数据表明符合互换性要求的甲烷-氢气掺混气能在12T天然气灶具上 稳定燃烧。 ④ 以现有江津J片区管网数据为依据建立拓扑模型,采用能量流量模式进行天 然气管网掺氢工况下稳态/瞬态水力仿真。结果显示氢气掺混百分比和节点用气量 越大,节点压力相对于未掺混时的压力下降幅度越大。 关键词,氢气掺混,互换性,掺混燃烧,天然气管网,水力模拟英文摘要 III ABSTRACT With the depletion of fossil fuels, renewable energy is becoming a research hotspot because of its clean, environmental protection and sustainable utilization. The production of renewable energy, such as solar energy, wind energy and hydropower, is unstable. When resources are abundant and terminal consumption is low, it can not be absorbed and has to be abandoned. One of the solutions to renewable energy consumption is to convert excess power into hydrogen as fuel for storage and use, which not only improves the cleanliness of energy but also guarantees the stability of energy utilization. But at present, most of the current end users are designed to serve natural gas and liquefied petroleum gas. As a direct fuel supply, hydrogen needs to replace gas appliances and require the laying of hydrogen pipeline, which leads to high cost. Due to the vigorous development stage of natural gas, the number of natural gas pipeline built in the world is huge and its transportation and carrying capacity are huge. So it is a better transition scheme to use hydrogen into the existing natural gas pipeline network. In order to study the feasibility of mixing and using natural gas and hydrogen, this paper carries out a theoretical, experimental and Simulation Analysis on the safety of the transmission and distribution system, the stability of the burning tool and the transmission capacity of the pipe network. The main contents and conclusions are as follows: ① Analysis of interchangeability for hydrogen in natural gas. The interchangeability is determined by Wobbe index, combustion potential, A.G.A index and Weaver index, and the safety analysis is carried out with explosive limit calculation and diffusion. The results show that when the volume fraction of hydrogen mixed with methane is less than 24%, the mixing gas and reference gas have interchangeability. ② Designing a standpipe experiment to verify the stratification of natural gas hydrogen mixture after standing at standpipe. The numerical changes of the ratio of methane to hydrogen at different heights in the riser were measured. The experimental results show that the difference of the ratio is very small, indicating that the mixing gas in the riser could not be stratified under the experimental conditions. ③ The combustion test is designed to test the stability and thermal performance of natural gas cooker in the presence of hydrogen. The combustion characteristics of hydrogen volume fraction of 5%, 10%, 15% and 20% of methane mixed under the重庆大学硕士学位报告 IV working condition of 1kPa, 2kPa and 3kPa were compared. The effects of hydrogen doping on heat load, thermal efficiency of stove, primary air coefficient and composition of flue gas were analyzed. The experimental data show that the methane-hydrogen mixing gas that meets the interchangeability requirement can be stable combustion on the 12T natural gas cooker. ④ Based on the existing data of the JiangJin J area network, the topology model is established, and the energy flow model is used to simulate the steady / transient hydraulic simulation of the natural gas pipe network under the hydrogen mixing condition. The results show that the greater the percentage of hydrogen mixing and the greater the gas consumption, the greater the pressure drop of node pressure is when compared with that without mixing. Key words: hydrogen mixing, interchangeability, mixing combustion, natural gas pipeline network, hydraulic simulation.目 录 V 目 录 中文摘要..........................................................................................................................................I 英文摘要.......................................................................................................................................III 1 绪 论.........................................................................................................................................1 1.1 选题背景 ..................................................................................................................................1 1.2 国内外研究现状 ......................................................................................................................3 1.2.1 天然气掺混氢气互换性研究现状...................................................................................4 1.2.2 氢气安全性研究现状.......................................................................................................4 1.2.3 管道设备对氢气掺混适应性研究现状...........................................................................4 1.2.4 管网水力计算研究现状...................................................................................................5 1.3 课题研究的目的和意义 ..........................................................................................................6 1.4 研究内容 ..................................................................................................................................6 2 天然气与氢气掺混可行性理论分析.........................................................................9 2.1 天然气与氢气掺混供应的互换性理论计算...........................................................................9 2.1.1 燃气的互换性理论基础...................................................................................................9 2.1.2 燃气的互换性判定方法.................................................................................................10 2.1.3 天然气掺混氢气的互换性判定分析.............................................................................21 2.2 天然气掺混氢气掺混气的安全性分析.................................................................................22 2.3 管道设备对天然气掺混氢气的适应性分析.........................................................................25 2.3.1天然气管道对氢气掺混的适应性...................................................................................25 2.3.2 天然气设备对氢气掺混的适应性.................................................................................27 2.4 本章小结 ................................................................................................................................27 3 天然气-氢气掺混