文本描述
原创性声明
本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的
成果。除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或
成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本声明的法律结
果由本人承担。
论文作者签名:
日期:2022年12月8日
学位论文版权使用授权说明
本人完全了解海南大学关于收集、保存、使用学位论文的规定,即:学校有权保留并向国家
有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权海南大学可以将
本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段
保存和汇编本学位论文.本人在导师指导下完成的论文成果,知识产权归属海南大学.
保密论文在解密后遵守此规定。
论文作者签名:
导师签名:
日期:2022年12月8日
日期: 2022年12月8日
……
本人已经认真阅读“CALIS高校学位论文全文数据库发布章程”,同意将本人的学位论文提
交“CALIS高校学位论文全文数据库”中全文发布,并可按“章程”中规定享受相关权益。同意
论文提交后滞后:□半年;□一年;□二年发布.
论文作者签名:
导师签名:
日期:2022年12月8日
日期: 2022年12月8日
摘要
近年来,随着移动互联网的快速发展、人均可支配收入的提高及网络支付、快递
服务等基础设施不断完善,使国内的网络购物吸引了大批的消费者,规模不断扩大,
而手机移动端购物 APP的推广使用,则为我国新零售模式的快速发展打开了一扇新
的大门,由此产生了许多基于手机移动网络的新型购物模式,社区团购模式就是其中
表现较为突出的一种。但目前国内移动电商市场扩展空间有限,加之社区团购新规出
台引发行业洗牌,社区团购的玩家们都想要抢占市场、赢得顾客,各大平台竞争十分
激烈。除此之外,社区团购用户目前还处于被低价产品吸引的阶段,没有形成稳定的
购买习惯,高价值物品转换率也较低,其用户价值还远未达到最高效的挖掘。因此,
对社区团购用户购买行为的影响因素研究仍然是有必要的。本文以社区团购的代表美
团优选作为研究对象,研究美团优选用户发生购买行为的过程中受到哪些因素的影
响,能够帮助企业提高其购物的转化率,实现更平稳健康的发展,同时也可以更好地
提升社区团购用户的购物体验及参与度。
通过对国内外社区团购相关文献的梳理和总结,首先对社区团购的背景进行了介
绍,而后对其定义和研究现状进行分析,并阐述了相关理论;其次在UTAUT模型的基
础上,引入了感知风险和感知信任两个新的维度,提出了影响社区团购用户购买意愿
和行为的六个影响因素,构建了理论模型并提出假设;第三,以调查问卷的形式,收
集了487个有效样本数据并运用 SPSS和 AMOS软件进行数据分析,构建结构方程模
型(SEM)对理论模型进行检验和修正,结果表明:(1)绩效期望、努力期望、社
会影响均对团购意愿和感知信任有显著的正向影响,进而影响影响购买行为;(2)
感知风险对感知信任有显著的负向影响,但对团购意愿的影响不显著;(3)感知信
任、团购意愿、促成因素对购买行为均有显著的正向影响。
根据研究结论,从增加商品种类并提高品控、优化平台系统设计、运用大数据推
进平台智能化营销、增强用户隐私及支付安全保护、用社群价值认同促进品牌认同等
五个方面,提出了有利于我国社区团购市场和企业健康和可持续发展的建议。
关键词:社区团购;购买行为;UTAUT模型;影响因素
Abstract
In recent years, with the rapid development of the mobile Internet, the improvement
of per capita disposable income and network payment, express delivery services and other
infrastructure improvement, make domestic online shopping attracted a large number of
consumers, expanding, and mobile terminal shopping APP use, for the rapid development
of the new retail mode opened a new door, resulting in many new shopping mode based on
mobile phone mobile network, community buying model is one of the more outstanding
performance. But at present, the domestic mobile e-commerce market expansion space is
limited, coupled with the introduction of new community group buying rules triggered an
industry reshuffle, community group buying players All want to seize the market and win
customers, and the competition is very fierce. In addition, community group buying users
are still in the stage of being attracted by low-price products, and have not formed stable
buying habits, the conversion rate of high-value items is also low, and their user value is
far from reaching the most efficient mining. Therefore, it is still necessary to study the
influencing factors of the purchasing behavior of community group-buying users. This
paper takes Meituan optimization, the representative of community group buying, as the
research object to study what factors are affected in the process of purchasing behavior of
meituan optimization users, which can help enterprises to improve the conversion rate of
their shopping and achieve more stable and healthy development It can better improve the
shopping experience and participation of community group buying users.
Through the reviewand summary of community groupbuying literature, the
definition and research status, and then, based on the UTAUT-model, two new dimensions
of perceived risk and perceived trust, six factors of purchase intention and behavior,
theoretical model and hypothesis, 487 valid sample data are collected and SPSS and
AMOS software for data analysis, structural equation model (SEM) theoretical model
Inspection and correction, the results show that: (1) performance expectation, effort
expectation and social influence have a significant positive impact on group buying
intention and perceived trust; (2) perceived risk has a significant negative impact on
perceived trust, but no significant impact on group buying intention; (3) perceived trust,
group buying intention and contributing factors have a significant positive impact on
purchase behavior.
According to theresearch conclusion, there arefive aspects, from increasing
commodity types and improving quality control, optimizing platform system design, using