首页 > 资料专栏 > 经营 > 运营治理 > 其他资料 > 植物油基三元胺的制备及其用于聚脲合成的可行性研究

植物油基三元胺的制备及其用于聚脲合成的可行性研究

libojuan
V 实名认证
内容提供者
热门搜索
资料大小:1715KB(压缩后)
文档格式:DOC
资料语言:中文版/英文版/日文版
解压密码:m448
更新时间:2020/10/21(发布于浙江)

类型:金牌资料
积分:--
推荐:升级会员

   点此下载 ==>> 点击下载文档


文本描述
为了降低生物难降解食品包装材料对环境造成的污染,近年来以 植物油为原料制备生物可降解的聚合物材料已经成为一个新的研究热 点。本研究建立了由三油酸甘油酯经由中间体甘油三元醇、甘油三元 醛及甘油三元苄胺合成出结构新颖的甘油三元胺的技术路线。对菜籽 油和桐油进行脂肪酸分析,并证明由菜籽油和桐油可以合成出甘油三 元胺。初步研究甘油三元胺与六亚甲基二异氰酸酯合成聚脲的条件, 并对聚脲进行结构鉴定和热力学性能表征。此外,还探索了甘油三元 醇替代丙三醇应用于食品包装的可行性。主要研究内容及结果如下: 1、植物油基三元胺的合成及表征 通过臭氧氧化、硼氢化钠还原作用后,三油酸甘油酯转化为甘油 三元醇,得率为 62.8%,并采用 1 H-NMR、 13 C-NMR、FT-IR及LC-MS 技术对甘油三元醇进行结构鉴定,同时优化和调整反应条件。 甘油三元醇在 2-碘酰基苯甲酸(IBX)的作用下被氧化为甘油三 元醛,得率为 30.3%,并采用 1 H-NMR、 13 C-NMR、FT-IR及LC-MS技 术对甘油三元醛进行结构鉴定,同时优化和调整反应条件。 甘油三元醛与苄胺发生加成反应后,在硼氢化钠作用下,被还原 转化为甘油三元苄胺,得率为 71.4%,并采用 1 H-NMR、 13 C-NMR、FT-IR 及LC-MS技术对甘油三元苄胺进行结构鉴定,同时优化和调整反应条 件。上海交通大学硕士学位报告 II 在钯碳(Pd/C)催化剂的作用下,甘油三元苄胺发生氢化反应, 转化为甘油三元胺,得率为 74.6%,并采用 1 H-NMR、 13 C-NMR、FT-IR 及LC-MS技术对甘油三元胺进行结构鉴定,同时优化和调整反应条件。 此外,采用气相色谱法测定菜籽油和桐油的脂肪酸组成,分析菜 籽油和桐油合成甘油三元醇的可能性,并进行实验证明了由菜籽油和 桐油合成出甘油三元醇,得率分别为 42.6%、52.2%,再结合本研究所 建立的由甘油三元醇合成甘油三元胺的方案,证明由菜籽油和桐油合 成甘油三元胺是可行的。 2、甘油三元胺合成聚脲的可行性研究 采用六亚甲基二异氰酸酯与甘油三元胺反应合成聚脲,初步探索 反应的条件、单体的配比以及聚脲的性能。结果显示,当六亚甲基二 异氰酸酯与甘油三元胺的摩尔比为 0.8 时,可以合成出无色透明的聚 脲而不会发生凝胶现象。 聚脲的重均分子量仅为21,175 g/mol,热稳定较好,熔点为374℃。 因此,由甘油三元胺合成聚脲的条件有待优化,同时聚脲的结构鉴定 和性能表征有待深入研究。 3、植物油基三元醇用于包装的可行性研究 将甘油三元醇添加到壳聚糖/聚乙烯醇/纳米TiO 2 的膜液中,流延法 制备复合膜,并测定复合膜的物理性能、机械性能和阻隔性能。结果 显示,甘油三元醇对复合膜的表观构象、机械性能和阻隔性能均有影 响,因此甘油三元醇作为一种新型增塑剂应用于包装材料具有可行性, 并可进一步优化结构和膜的配方来提高其特性。 关键词,植物油,三油酸甘油酯,甘油三元胺,聚脲,包装材料上海交通大学硕士学位报告 III SYNTHESIS OF VEGETABLE OIL-BASED TRIAMINE AND ITS FEASIBILITY IN POLYUREA PRODUCTION ABSTRACT In order to reduce the environmental pollution caused by non-biodegradable food packaging materials, more researches have been focused on preparing biodegradable polymeric materials derived from bio-resources. This study has established a methodology to synthesize a novel triamine from triolein via intermediates triol, trialdehyde and tribenzylamine. The structures of triol, trialdehyde, tribenzylamine and triamine were characterized by 1 H NMR, 13 C NMR FT-IR and LC-MS. Triol was synthesized from rapeseed oil and tung oil. It proved that the developed methodology of synthesizing triamine can be applied to vegetable oils. A preliminary study of synthesizing polyurea from triamine and hexamethylene diisocyanate was also conducted, and its thermal properties were evaluated. In addition, the feasibility of triol as an alternative of glycerol used in food packaging was studied. The main contents and results of this thesis research are described as follows: 1. Synthesis and characterization of vegetable oil-based triamine After ozone oxidation and sodium borohydride reduction, triolein was transformed into triol. The triol was isolated with a yield of 62.8%, and its structure was characterized by 1 H NMR, 13 C NMR FT-IR and LC-MS. The reaction conditions were optimized. Triol was oxidized to trialdehyde by 2-Iodoxybenzoic acid (IBX). The上海交通大学硕士学位报告 IV trialdehyde was isolated with a yield of 30.3% and its structure was characterized by 1 H NMR, 13 C NMR FT-IR and LC-MS. The reaction conditions were optimized. Trialdehyde was reacted with benzylamine to obtain tribenzylamine in reduction of sodium borohydride. The tribenzylamine was isolated with a yield of 71.4%, and its structure was characterized by 1 H NMR, 13 C NMR FT-IR and LC-MS. The reaction conditions were optimized. Tribenzylamine was transformed into triamine when hydrocracked by reacting with hydrogen with palladium on c arbon. The triamine was isolated with a yield of 74.6%, and its structure was characterized by 1 H NMR, 13 C NMR FT-IR and LC-MS. The reaction conditions were optimized. The fatty acid composition of rapeseed oil and tung oil was determined by gas chromatography to analyze the feasibility to synthesize triol with the developed methodology. Triol was then successfully prepared from rapeseed oil and tung oil with the yield of 42.6% and 52.2%, respectively. Considering the technical route to synthesize triamine from triol established in this study, triamine can be prepared from rapeseed oil and tung oil. 2. Synthesis of polyurea from triamine Polyurea was synthesized via hexamethylene diisocyanate and triamine. When the molar ratio of hexamethylene diisocyanate and triamine was 0.8, polyurea elastomer can be effectively synthesized without gelation, and it was colorless and transparent. The results showed that the weight-average molecular weight (Mw)上海交通大学硕士学位报告 V of polyurea was only 21,175 g/mol, and its thermal stability was good, while the melting point of polyurea was 374℃. Therefore, the synthesis conditions of polyurea via triamine need to be optimized, while the structural identification and property characterization of polyurea need further study. 3. Usage of vegetable oil-based triol in packaging The triol synthesized in this study was added to chitosan/poly (vinyl alcohol)/nano TiO 2 solutions and made into composite packaging films by casting. The physical, mechanical and barrier properties of the film were investigated. The incorporated triol showed evident intermolecular effect with other molecules in the film, and influenced the microstructure, mechanical and barrier properties of the composite film. The results proved that triol as a new plasticizer used in packaging materials may be feasible, and the property can be improved through further optimizing the structure and the formula of the composite film. KEY WORDS: Vegetable oil, triolein, triamine, polyurea, packaging materials上海交通大学硕士学位报告 VI 目 录 第一章 绪论 ..................................................................................................................1 1.1 研究背景 .........................................................................................................1 1.2 油化产品的开发和应用研究进展 .................................................................2 1.2.1 植物油的主要成分和结构 ..................................................................2 1.2.2 由油脂生产生物柴油 ..........................................................................4 1.2.3 由油脂生产表面活性剂 ......................................................................4 1.2.4 由油脂生产生物润滑剂 ......................................................................4 1.2.5 由油脂生产聚合物 ..............................................................................5 1.3 报告的创新性 .................................................................................................5 1.4 研究内容与预期结果 .....................................................................................6 1.4.1 研究内容 ..............................................................................................6 1.4.2 预期结果 ..............................................................................................6 第二章 由三油酸甘油酯合成甘油三元胺的研究 ......................................................7 2.1 引言 .................................................................................................................7 2.2 设计思想 .............................................................