文本描述
高台子油层具有层数多、层位薄、含钙高、含泥多的特点,经过 20 多年 的持续开采,残余油饱和度大幅下降,含水持续上升,油层水洗的程度也存 在较大差异,需要针对这类油层探索有效的三次采油新技术。对于这类油层 的三次采油开发试验,目前还没有更多的参考资料。针对高台子油藏特点, 首先对聚表剂和二元体系(聚合物/表活剂)开展了室内评价实验,筛选出合 适的聚表剂类型、浓度和二元体系配方并进行了适应性评价。以相同浓度中 分聚合物作对比,进一步开展了人造岩心和天然岩心物理模拟实验和二元体 系数值模拟研究。通过物模实验确定出不同渗透率级别取得控制程度最大(提 高采收率最高)情况下聚表剂驱最佳注入参数及最佳二元体系配方。通过数 值模拟,在储量拟合的基础上,对试验区进行了水驱历史拟合,完成水驱、 聚驱和二元驱方案指标预测。通过室内性能评价实验,Ⅲ型聚表剂和二元体 系与高台子油层的油和水有较好的匹配关系。通过物理模拟驱油实验表明, 对于 200×10-3μm 2 与 600×10-3μm 2 两种渗透率级别,无论注入普通中分、二元 体系以及聚表剂,在注入条件相同的情况下,其采收率提高幅度相差不大。 对于 200×10-3μm 2 渗透率级别,聚表剂优选出的最佳注入浓度为 800mg/L,注 入段塞为 0.8PV;对于 600×10-3μm 2 渗透率级别,最佳注入浓度为 1000mg/L, 注入段塞为 0.8PV。 在相同渗透率、相同注入段塞条件下采收率提高幅度依次为Ⅲ型聚表剂 22.0%、RMA-1 型表活剂配制的浓度为 0.3%的二元体系为 20.9%、HLX 型表 活剂配制的浓度为 0.3%的二元体系为 18.6%,中分聚合物 14.2%。通过数值 模拟表明,从提高采收率结果看最佳方案为 2000mg/L 的中分聚合物,注入量 为 0.8PV,从吨聚增油效果来看,最佳方案是 1000mg/L 的中分聚合物、注入 量为 0.6PV。从提高采收率效果和经济效益综合考虑,合适的二元驱注入量 600mg/L·PV 到 800mg/L·PV,采收率幅度高于纯聚驱 7-7.5 个百分点。物理模 拟驱油实验和数值模拟均表明,在相同条件下,两种表活剂均是浓度为 0.3% 的二元体系提高采收率幅度高于表活剂浓度为 0.2%的体系,且相同表活剂浓 度下,RMA-1 型表活剂配制的二元体系在采收率提高幅度上要好于 HLX 型表II 活剂配制的二元体系。 关键词: 高台子油层,二元体系,聚表剂,驱油实验,数值模拟III Abstract Gaotaizi reservoir is characterized by multiply layers, thin intervals, high calcium content and rich mud. After a more than 20 years development, its residual oil saturation comes down dramatically; its water cut carries on rising, and its water-flushed degree diversifies seriously. It is necessary to explore new effective enhanced oil recovery technology aiming to further develop such reservoir. There is no report on experiment developing such reservoir with enhanced oil recovery technology. Aiming the characters of Gaotaizi reservoir, polymeric surface-active agents and surfactant/polymer systems are evaluated by lab experiments to screen suitable polymeric surface-active agent, its concentration and surfactant/polymer systems’ optimal formula and to determine its adaptability. Compared with HPAM solution in same concentration, physical simulation experiments on artificial and natural cores and surfactant/polymer system numerical simulation are conducted. From physical simulation experiments, polymeric surface-active agent’s optimal injection parameters and optimal surfactant/polymer system formula are determined to achieve maximum control on different permeability degree. With numerical simulation, history fit of water flooding and index prediction of flooding programs with water, polymeric surface-active agent and surfactant/polymer system are conducted on the base of reserves fit. Lab experiments of performance evaluation show that polymeric surface-active agent III and surfactant/polymer system match well with oil and water in Gaotaizi reservoir. In physical simulation experiments, for rocks with permeability degrees of 200×10-3μm 2 and 600×10-3μm 2 , on the same injection parameters, the enhanced oil recovery rates differ little for ordinary polymers with medium molecular weight, surfactant/polymer system or polymeric surface-active agent. For the permeability degree of 200×10-3μm 2 , the optimum parameters of injection of polymeric surface-active agent are content of 800mg/L, injection slug of 0.8PV; for the permeability degree of 600×10-3μm 2 , the optimum parameters of injection of polymeric surface-active agent are content of 1000mg/L, injection slug of 0.8PV. All tested agents are sorted in descending order according to enhanced oil recovery rate, which are 22.0% for polymeric surface-active agent of type III, 20.9% for surface-active agent type RMA-1 with content of 0.3%, 18.6 for surface-activeIV agent type HLX with content of 0.3% and 14.2% for ordinary polymers with medium molecular. The optimum program to get a maximum enhanced oil recovery rate is the ordinary polymers with medium molecular with the content of 2000mg/L and the injection amount is 0.8PV. The optimum program to get a highest enhanced oil recovery rate with one ton agent is the ordinary polymers with medium molecular with the content of 1000mg/L and the injection amount is 0.6PV. The optimum program with and comprehensive consideration of enhanced oil recovery rate and economic benefit is the surfactant/polymer system with the injection amount of 600mg/L.PV ~ 800mg/L.PV, with which we get an enhanced oil recovery rate 7 to 7.5 percentage point higher than that of pure polymer agent. Both physical simulation and numerical simulation show that both the surfactant/polymer systems with two different types of surface-active agents with content of 0.3% have better enhanced oil recovery rates than those with agents with content of 0.2% on the same injection conditions, and on the same content of agents, the surfactant/polymer system compounding with surfactant of RMA-1 has a better enhanced oil recovery rate than that of system compounding with surfactant of HLX. Keywords: Gaotaizi Reservoir, Surfactant/polymer System, Polymeric Surface-active Agent, Flooding Experiments, Numerical Simulation目 录 第 1 章 绪 论 ....................................................................................1 1.1 试验区总体概况..........................................................................2 1.1.1 地质特征 ...............................................................................2 1.1.2 油层发育基本情况 ...............................................................2 1.1.3 油层动用状况及剩余油分布 ...............................................3 1.1.4 试验区近况 ...........................................................................4 1.1.5 试验对象及注采井距 ...........................................................5 第 2 章 实验条件 ................................................................................9 2.1 聚合物和聚表剂..........................................................................9 2.2 实验用水......................................................................................9 2.3 实验用油......................................................................................9 2.4 表面活性剂................................................................................10 2.5 阻力系数与残余阻力系数测定实验条件 ...............................11 2.5.1 实验条件 .............................................................................11 2.5.2 实验原理简介 .....................................................................11 2.5.3 实验过程 .............................................................................12 2.6 实验仪器....................................................................................13 第 3 章 结果与讨论 ..........................................................................14 3.1 聚表剂室内评价实验................................................................14 3.1.1 聚表剂与现场污水匹配关系评价 .....................................14 3.1.2 粘度稳定性实验 .................................................................15 3.1.3 盐敏实验 .............................................................................16 3.1.4 聚表剂乳化增溶实验 .........................................................17 3.2 二元体系室内评价实验............................................................18 3.2.1 注入能力实验结果与分析 ................................