首页 > 资料专栏 > 经营 > 运营治理 > 其他资料 > 2020年线材热直轧薄带钢可行性研究报告DOC

2020年线材热直轧薄带钢可行性研究报告DOC

四海不锈***
V 实名认证
内容提供者
热门搜索
资料大小:3821KB(压缩后)
文档格式:DOC
资料语言:中文版/英文版/日文版
解压密码:m448
更新时间:2021/2/6(发布于甘肃)

类型:金牌资料
积分:--
推荐:升级会员

   点此下载 ==>> 点击下载文档


文本描述
发蓝带钢作为一种包装带钢,属于薄带钢的一种,被广泛应用于钢材、有色 金属、轻纺制品、建材等金属材料的包装。传统生产方式采用冷轧或热轧板带经 纵剪成型,但剪切后的薄带钢边部易产生毛边和毛刺等缺陷。与传统生产发蓝带 钢的方式不同,利用线材轧制生产薄带,可以提高产品的边缘质量,减少边部毛 刺、裂纹等缺陷。 本文以线材 30MnSi 和 45 钢为研究对象。对 30MnSi 进行热模拟实验,研究 变形温度和冷却速度对组织与性能的影响。通过将线材 30MnSi 进行热轧,探究 不同轧制温度下的组织与力学性能,最终得到了抗拉强度较高的薄带钢。对 45 钢进行热轧实验,分别对 Ф16、Ф18、Ф20 mm 的 45 钢进行热轧,用 Ф16 mm 的 45 钢能够获得常用的 32 mm 尺寸的薄带钢。对轧后薄带钢力学性能均匀性进 行判断及此轧制方法下边部组织情况进行观察。 主要研究结果如下, (1)在 THERMECMASTOR 热模拟试验机上,通过热模拟压缩试验,确定压 缩温度及冷却速度对 30MnSi 组织与性能的影响。发现变形温度越低,冷却速度 越快,组织和性能越好。单道次压缩下,600℃水冷方式,维氏硬度达到 195 HV, 对应抗拉强度 625 MPa。双道次压缩,冷却速度在 20℃/s 时,维氏硬度达到 247 HV,对应抗拉强度 785 MPa; (2)在中厚板轧机上,对 30MnSi 钢进行热轧实验,研究轧制温度对组织和性 能的影响。其中轧制温度越低,得到的力学性能越好,在 650℃水冷条件下,抗 拉强度达到 918 MPa。轧制温度越高,断后伸长率越好,950℃水冷,断后伸长 率达到 18.8%。这种方法生产薄带钢,可以减少产品工艺流程,提高产品边缘质 量,降低产品缺陷; (3)对 45 钢进行热轧实验,不同尺寸线材的热轧实验表明,轧后试样的宽厚 比不同,Ф16 mm 的线材可以生产常用 32 mm 宽的发蓝带钢。边部和中心部力 学性能基本一致,边部组织和三维立体组织没有发现裂纹; (4)线材热直轧薄带钢方法可行,简化工艺流程,提高产品质量。 关键词,线材;30MnSi;薄带钢;热模拟;力学性能iii ABSTRACT As a kind of packaging strip, the blue strip steel is a kind of thin strip steel, which is widely used in the packaging of metal materials such as steel, non-ferrous metals, light textile products and building materials. The traditional production method uses cold-rolled or hot-rolled strips through slitting, but the edges of the thin strip after shearing are prone to defects such as burrs and burrs. Different from the traditional way of producing blue ribbon steel, the use of wire rod rolling to produce thin strips can improve the edge quality of the products and reduce defects such as edge burrs and cracks. In this paper, the wire 30MnSi and 45-steel are the research objects. Thermal simulation experiments were carried out on 30MnSi to study the effects of deformation temperature and cooling rate on microstructure and properties. By hot rolling the wire 30MnSi, the microstructure and mechanical properties at different rolling temperatures were investigated, and a thin strip with higher tensile strength was finally obtained. For the 45-steel hot-rolling experiment, 45 steels of Ф16, Ф18, and Ф20 mm were hot-rolled, and a thin strip of 32 mm was obtained with 45 steel of Ф16 mm. The uniformity of mechanical properties of the strip steel after rolling was judged and the edge structure of the rolling method was observed. The main findings are as follows: (1) On the THERMECMASTOR thermal simulation tester, the effects of compression temperature and cooling rate on the microstructure and properties of 30MnSi were determined by thermal simulation compression test. It is found that the lower the deformation temperature, the faster the cooling rate, and the better the structure and performance. Under single pass compression, 600°C water cooling, Vickers hardness of 195 HV, corresponding to tensile strength of 625 MPa. Double pass compression, with a cooling rate of 20°C/s, Vickers hardness of 247 HV, corresponding to a tensile strength of 785 MPa; (2) On the plate mill, hot rolling experiments were carried out on 30MnSi steel to study the effect of rolling temperature on microstructure and properties. The lower the rolling temperature, the better the mechanical properties obtained. Under the water cooling condition of 650 °C, the tensile strength reaches 918 MPa. The higher the rolling temperature, the better the elongation after breaking, the water cooling at 950°C, and the elongation after breaking reached 18.8%. This method of producing thin strip steel can reduce the product process, improve the edge quality of the product,iv and reduce product defects; (3) Hot-rolling experiments on 45 steel, hot-rolling experiments of different size wires show that the width-thickness ratio of the samples after rolling is different, and the wire of Ф16 mm can produce the common blue-belt strip with a width of 32 mm. The mechanical properties of the edge and the center were basically the same, and no cracks were found in the edge and three-dimensional structures; (4) The method of hot strip rolling of strip steel is feasible, simplifying the process and improving product quality. Key Words: wire rod, 30MnSi, Thin strip steel, thermal simulation, mechanical properties目录 独创性声明.....................................................................................................................i 关于报告使用授权的说明.............................................................................................i 中 文 摘要..................................................................................................................ii ABSTRACT..................................................................................................................iii 1 绪论............................................................................................................................1 1.1 引言..................................................................................................................1 1.2 线材和带钢的用途和分类..............................................................................1 1.2.1 线材的用途和分类................................................................................1 1.2.2 带钢的用途和分类................................................................................2 1.3 线材热直轧薄带钢研究现状..........................................................................3 1.3.1 热轧方法................................................................................................3 1.3.2 线材轧扁工艺........................................................................................3 1.3.3 线材 30MnSi 其他学者研究方法.........................................................5 1.4 提高薄带钢组织与性能的工艺方法..............................................................6 1.4.1 控轧控冷工艺........................................................................................6 1.4.2 热处理工艺............................................................................................7 1.5 研究目的和主要内容......................................................................................8 1.5.1 课题研究的目的和意义........................................................................8 1.5.2 研究的主要内容....................................................................................8 2 30MnSi 热模拟实验.................................................................................................10 2.1 热模拟技术的简介.........................................................................................10 2.1.1 热模拟技术..........................................................................................10 2.1.2 THERMECMASTOR 热模拟试验机..................................................10 2.1.3 THERMECMASTOR 的应用..............................................................11 2.1.4 热模拟实验的优点..............................................................................11 2.1.5 热模拟实验目的..................................................................................12 2.2 实验材料及设备.............................................................................................12 2.2.1 实验原料的尺寸及其化学成分..........................................................12 2.2.2 热模拟实验设备................................................................................