文本描述
南京邮电大学学位论文原创性声明
本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过
的研究成果,也不包含为获得南京邮电大学或其它教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
本人学位论文及涉及相关资料若有不实,愿意承担一切相关的法律责任。
研究生学号:_1019111926_研究生签名:
日期:_2022年4月10日
南京邮电大学学位论文使用授权声明
本人承诺所呈交的学位论文不涉及任何国家秘密,本人及导师为本论文的涉密责任并列
第一责任人。
本人授权南京邮电大学可以保留并向国家有关部门或机构送交论文的复印件和电子文
档;允许论文被查阅和借阅;可以将学位论文的全部或部分内容编入有关数据库进行检索;
可以采用影印、缩印或扫描等复制手段保存、汇编本学位论文。本文电子文档的内容和纸质
论文的内容相一致。论文的公布(包括刊登)授权南京邮电大学研究生院办理。
非国家秘密类涉密学位论文在解密后适用本授权书。
研究生签名:
导师签名:
日期:2022年4月10日
摘要
自提出“大众创业,万众创新”以来,各领域企业不断增加研发投入,提升自身创新能
力,拓展创新途径,实现了从“生产主体”到“创新主体”的转变。同时,企业所处的创新环
境日趋动态且复杂,创新市场和创新要素呈多元化发展,这些都迫切要求创新主体能够根据
自身实际条件选择针对性的资源,提升专业化能力。此外,企业竞争趋势也逐渐从单个企业
竞争演进为区域产业之争。在“把握新机遇,激发新动能”的进程中,南京高新技术产业发
展迅猛,企业、高等院校、科研院所、政府、金融机构等创新主体沟通协作,促成了创新网
络的产生,人力、技术、知识和资本等创新要素在网络中充分流动,不断反作用于创新企业。
在此背景下,要想优化南京高新技术产业的空间布局、提高高新技术产业的发展水平,研究
南京高新技术产业集群创新网络的空间资源分布、空间发展差异、专业化程度以及影响集群
企业创新的因素,总结产业及集群的演化规律将是一个具有实践意义的路径。
基于以上背景,本文选取南京市高新技术产业集群为研究对象,首先对开放式创新理论、
知识基础理论、创新网络演化及相关研究进行梳理;随后,基于南京市企业和科技投入数据,
使用区位熵和GeoDa空间自相关法分析南京高新技术产业的创新资源空间分布及各区域间的
产业差异;其次,构建考虑企业适应性进入和不适应退出的复杂网络演化模型,剖析创新主
体动态变化的网络演化规律;最后,本文重点探讨了网络嵌入对企业创新的作用机理,并分
析知识获取在其中的中介作用,为使结果更具普适性,模型中还引入了网络权力和知识整合
两个调节变量。在此理论假设模型下,选择高新技术产业集群内的企业为研究对象,通过
SPSS22.0和 AMOS24.0统计软件对收集到的 306份有效问卷数据进行样本正态性检验、信效
度分析、共同方法偏差检验及回归分析。最后,根据实证研究结果,针对性地提出优化南京
高新技术产业集群网络及促进产业良性发展的对策建议。
关键词:创新网络,高新技术产业,产业集群,集群演化,创新绩效
I
Abstract
Since the concept of "mass entrepreneurship and innovation" was put forward, enterprises in
various fields have continuously increased R&D investment, improved their innovation capacity,
explored new ways of innovation, and realized the transformation from being the main producer to
the main innovator. At the same time, the innovation environment of enterprises is increasingly
dynamic and complex, and the innovation market and innovation elements are developing in a
diversified way. All these urgently require innovation subjects to choose targeted resources according
to their actual conditions and improve their professional ability. In addition, the trend of enterprise
competition is gradually evolving fromindividual enterprise competition to regionalindustry
competition. In "to grasp the new opportunities, stimulating new kinetic energy", in the process of
Nanjing new and high technology industries developing rapidly, enterprises, institutions of higher
learning, scientific research institutes, government, financial institutions and other innovative main
body communication andcollaboration, contributed to thegeneration of innovation network,
innovation elements such as manpower, technology, knowledge and capital full flow in the network,
continuous reaction in innovation enterprise. In this background, to want to optimize the space layout
of the Nanjing new and high technology industries, improve the level of the development of high-
tech industries, studies the Nanjing high-tech industrial cluster innovation network space resource
distribution, the difference of spatial development, specialization degree and the factors that affect
cluster enterprise innovation, summarizes the industrial cluster and the evolution of the law will be a
practical path.
Based on the above background, this paper selects Nanjing high-tech industrial cluster as the
research object, and firstly sorts out the open innovation theory, knowledge base theory, innovation
network evolution theory and related researches. Then, based on the data of Nanjing enterprises and
science and technology investment, the spatial distribution of innovation resources and industrial
differences among different regions of Nanjing high-tech industry are analyzed by using location
quotient and GeoDa spatial autocorrelation method. Secondly, a complex network evolution model
considering adaptive entry and maladaptive exit of enterprises is constructed to analyze the network
evolution law of the dynamic change of innovation subjects. Finally, this paper focuses on the
mechanism of network embedding on enterprise innovation, and analyzes the mediating role of
knowledge acquisition. In order to make the results more universal, two moderating variables,
II