文本描述
头孢菌渣是在发酵生产头孢菌素 C 的过程中产生的固体废弃物,由于其 中含有微量的头孢菌素 C 残留,对生态环境存在潜在的危害,已被定为危险 废物。目前该领域的研究重点是菌渣中残留效价的检测及合理的资源化利用技 术。本文通过对头孢菌渣的理化性质进行分析,以如何检测头孢菌渣中的残留 效价和资源化利用菌渣为研究目的,通过对菌渣的成分分析,利用头孢菌渣中 大量的脂类,蛋白质等有机物,实现废物的资源化为目的,本文独立研究了头 孢菌渣中残留效价的检测方法和完整的头孢菌渣厌氧发酵预处理工艺,为后续 的科研及解决菌渣的资源化利用提供依据,具有很大的参考价值。 首先,头孢菌渣理化性质分析,头孢菌渣中无机元素主要为 C、H、O、N、 S,共占头孢菌渣干重的 94.4%;菌渣傅里叶红外分析表明头孢菌渣中主要含 有 C-N、C=C、-S-S-等基团的烷烃、脂类、蛋白质等有机物;头孢菌渣干基中 粗蛋白含量为 39.37%,粗脂肪 16.55%,含水率 62%; 最后,对头孢菌渣中 的部分金属元素进行含量分析,其中 Ca、Mg 元素含量很高,Cu、Cr、Cd、 Pb、Ni 等重金属含量很低,均低于 GB18918-2002 中规定的污泥在 pH<6.5 的 酸性土壤中用于农用时的污染物控制标准值。 其次,建立头孢菌渣中头孢菌素 C 的残留效价的检测方法,建立了头孢 菌素 C 标准品的 HPLC 检测方法,选用 Agilent C18(250mm×4.6um)柱,乙 腈,10mmol/L NaH 2 CO 3 (0.2:0.8)为流动相,流速 1.0 mL/min,柱温 30℃, 紫外检测器,检测波长 254nm,利用上述条件检测头孢菌素 C 的标准曲线具 有很高的精确度,R 2 =0.9995;确定了头孢菌渣中残留的头孢菌素 C 的提取方 法,40%的乙腈水混合液为提取剂,超声提取,提取 3 次,每次 15min,提取 pH 值为 6,正己烷萃取纯化,旋转蒸发浓缩,提取率均能保证在 80%~120% 之间,最后,对建立的检测方法进行了实际样品验证,表明该方法对于实际样 品的适应性较好,最低定量检测限为 10.8ug/kg,定性检测限为 3.2ug/kg,均 远低于欧盟动物性食物中规定的头孢菌素类抗生素的最高残留限量值。 最后,为提高头孢菌渣的可生化性,分别对头孢菌渣采取热、碱、碱热联 合三种预处理,对预对其进行生化产甲烷实验,确定了加碱量 0.08gNaOH/gTS, 温度80℃,联合处理2小时,为最佳预处理组和,甲烷产率可达 450 mlCH 4 /gVS, 是未经处理的头孢菌渣甲烷产率的 1.34 倍,剩余沼渣、沼液中 CPC 均未检出。 关键词,头孢菌渣;残留效价检测;厌氧发酵;预处理;生化产甲烷潜能哈尔滨工业大学工程硕士学位报告 -II- Abstract Cephalosporin slag is a kind of solid waste, which generated in the production of cephalosporin C fermentation process, because it contains trace amounts of cephalosporin C residues, existing potential hazards on the ecological environment has been designated as hazardous waste. Current research focus is in the field of testing and rational utilization of residual slag technical bacteria titer. Based on the physicochemical properties of cephalosporin slag analyzed to how to detect residual slag cephalosporin titer and bacterial residue utilization for research purposes, by bacteria slag composition analysis, the use of cephalosporin in a large number of lipid residue , proteins and other organic substances, waste of resources into the purpose of this paper, an independent study of the cephalosporin residual slag detection methods and full potency cephalosporin anaerobic fermentation residue pretreatment process for subsequent research and resources to solve the bacteria residue provide the basis for utilization has great reference value. First, the physical and chemical nature of the residue analysis cephalosporin, cephalosporin slag mainly inorganic elements C, H, O, N, S, cephalosporins accounted for 94.4% of the dry weight of slag; bacteria residue Fourier transform infrared analysis showed cephalosporin slag mainly containing CN, C = C,-SS-groups, such as alkanes, lipids, proteins and other organic matter; cephalosporin dry residue of crude protein content of 39.37%, 16.55% crude fat, moisture content of 62%; Finally, the cephalosporin slag content analysis of some metal elements, including Ca, Mg high element content, Cu, Cr, Cd, Pb, Ni and other heavy metal content is very low, lower than GB18918-2002 as specified in the sludge at pH<6.5 acidic soil contamination control standards when used in agricultural value. Secondly, the detection methods establishment of residual titer slag cephalosporin cephalosporin C, the establishment of a high-performance liquid chromatography method cephalosporin C standard, the choice of Agilent C18 (250mm × 4.6μm) column, acetonitrile: 10mmol/L NaH 2 CO 3 (0.2:0.8) as the mobile phase flow rate of 1.0 mL/min, column temperature was 30℃, UV detector, detection wavelength 254nm, standard curves using the above condition is detected cephalosporin C with high accuracy, R 2 = 0.9995; extraction method to determine the residual slag cephem cephalosporin C, a mixture of 40% aqueous acetonitrile as the extracting agent, ultrasonic extraction, and extracted three times, each time 15min, extract pH value of 6, n-hexane extraction and purification rotary evaporation, extraction rate guarantee between 80% to 120%, and finally, the哈尔滨工业大学工程硕士学位报告 -III- detection methods were established to verify the actual sample, indicating that this method is better for adaptive real samples, the minimum quantitative detection limit was 10.8μg/kg, qualitative detection limit was 3.2μg/kg, were far below the maximum residue limit value cephalosporin antibiotics in animal food EU regulations. Finally, in order to improve cephalosporin slag the biodegradability, respectively cephalosporin joint three pretreatment hot slag, alkali, alkaline hot slag after pretreatment of bacteria producing methane biochemical experiments to determine the amount of alkali 0.08gNaOH/gTS, treatment temperature 80℃, the combined treatment two hours, as the best pretreatment and methane yield of 450 mlCH 4 /gVS, 1.34 times the yield of methane cephalosporin slag untreated. cephalosporin C were not detected in anaerobic fermentation of the remaining residue, biogas slurry . Keywords: cephalosporin slag; residual titer detection; anaerobic fermentation; pretreatment; biochemical methane potential.哈尔滨工业大学工程硕士学位报告 -IV- 目 录 摘要 .....................................................................................................................I Abstract...................................................................................................................II 第 1 章 绪 论....................................................................................................... 1 1.1 课题来源及研究背景和意义 ....................................................................... 1 1.1.1 课题背景 ............................................................................................... 1 1.1.2 课题来源 ............................................................................................... 3 1.2 头孢菌素类抗生素简介............................................................................... 3 1.2.1 头孢菌素类药物结构与性质 ................................................................ 4 1.2.2 头孢菌素类药物的分类 ........................................................................ 6 1.2.3 头孢菌素类药物的产量和用途 ............................................................ 7 1.3 头孢菌渣的现状 .......................................................................................... 7 1.3.1 头孢菌渣的来源及性质 ........................................................................ 7 1.3.2 头孢菌渣处置及利用现状 .................................................................... 8 1.3.3 头孢菌渣的危害 ................................................................................... 9 1.4 头孢菌渣中残留效价的检测 ....................................................................... 9 1.4.1 提取方法 ............................................................................................. 10 1.4.2 净化方法 ............................................................................................. 10 1.4.3 浓缩方法 ............................................................................................. 11 1.4.4 检测方法 ............................................................................................. 11 1.5 抗生素菌渣资源化利用现状 ...................