首页 > 资料专栏 > 论文 > 专题论文 > 优化改进论文 > MBA硕士论文_B2C环境下闭环供应链定价模型的优化DOC

MBA硕士论文_B2C环境下闭环供应链定价模型的优化DOC

richeng***
V 实名认证
内容提供者
热门搜索
B2C 供应链 定价模型
资料大小:847KB(压缩后)
文档格式:DOC
资料语言:中文版/英文版/日文版
解压密码:m448
更新时间:2019/2/6(发布于广东)

类型:金牌资料
积分:--
推荐:升级会员

   点此下载 ==>> 点击下载文档


文本描述
摘要
随着互联网渗透生活,人们消费水平的提高和需求的不断变化,各类产品的市场生
命周期不断缩短,使废旧产品数量也在不断增加,而人们环保意识的逐渐增强,企业受
到经济利益的驱动,发展并优化供应链逐渐变成企业建立竞争优势的有效手段

闭环供应链管理最重要的一个职能是协调定价,它与产品的回收、需求和系统运作
效率有一定的关系。然而传统的博弈理论只能系统地分析其供应链某个因素的变化对其
利润的影响,而不能帮企业做出定价的最终决策,所以我们使用遗传算法,对供应链模
型进行仿真分析

遗传算法是一种根据生物界自然选择和自然遗传机制的随机搜索算法。它特别适用
解决使用传统搜索方法难以处理的复杂问题和非线性问题,可广泛用于机器学习、组合
优化、人工智能等领域,是 21 世纪智能计算中的关键技术之一

鉴于此,本文在总结相关文献研究的基础之上,对 B2C 环境下闭环供应链定价决
策建立模型,并使用遗传算法进行优化决策。其主要研究内容如下:
(1)对闭环供应链产品定价问题进行建模,建立了同一市场的不同决策主体下的
决策模型:分散化决策模型、集中化决策模型和基于分散化决策下的契约协调成本分担
契约决策模型;(2)提出了基于多目标遗传算法的闭环供应链产品定价求解方案,应
用多目标遗传算法对闭环供应链产品进行优化定价;(3)对决策模型及优化定价方案
进行仿真分析,快捷准确地知道如何确定销售价格和回收价格可以使制造商和零售商利
润达到最大,为以后企业的定价管理决策提供了很大的帮助

本文的研究结果表明,遗传算法对企业的定价决策有很直观的辅助作用;B2C 环境
下的闭环供应链项目选择合理契约协调机制可以使得闭环供应链系统获得最佳的经济
收益

关键词:遗传算法;B2C 环境;闭环供应链;定价模型;优化定价;iii
Abstract
With the Internet to penetrate life, people and raise the level of consumption demand
changing, all kinds of product market life cycle shorten constantly, waste products are also
growing, the number and the people environmental protection consciousness gradually
enhanced, driven by economic interests, enterprise development and optimize the supply
chain has become enterprises to establish an effective means of competitive advantage.
In closed loop supply chain management, the coordination pricing is one of its important
functions, it relates to the product&39;s recycling, demand and system operation efficiency.
However, the traditional game theory can only be systematically analysis the change of its
supply chain some factors affect its profits, and cannot help companies to make pricing of the
final decision, so we use the genetic algorithm, the simulation analysis was carried out on the
model of supply chain.
The genetic algorithm is a stochastic search algorithm based on natural selection of
biology and natural genetic mechanism. It is especially suitable for processing the traditional
search method is difficult to solve the problem of complex and nonlinear problems, and can
be widely used in machine learning, combinatorial optimization, artificial intelligence, and
other fields, is one of the key technologies of intelligent computing in the 21st century.
In view of this, this article on the basis of summarizing the related literature research, the
closed-loop supply chain pricing decision model in B2C environment, and use genetic
algorithm to optimize the decision. The main research is as follows:
(1) to the problem of closed-loop supply chain pricing model, established the same
market decision model under the different decision-making: the decentralized
decision-making model and centralized decision-making model and based on the contract
coordination cost sharing contract under the decentralized decision-making model; (2) is
proposed based on multi-objective genetic algorithm of closed-loop supply chain pricing
scheme, the application of multi-objective genetic algorithm to optimize the closed-loop
supply chain products pricing; (3) the simulation analysis was carried out on the
decision-making model and optimal pricing schemes, quick know exactly how to determine
the sales prices and recycling can maximize the manufacturers and retailers profit, for the
enterprise pricing management decision provides a lot of help.
The results of this paper show that the genetic algorithm has a direct effect on the pricing
decision of the enterprise. The closed-loop supply chain project in B2C environment selectsiv
the reasonable contract coordination mechanism to make the closed-loop supply chain system
obtain the best economic benefits.
Key words: genetic algorithm; B2C environment; closed-loop supply chain; the pricing
model; optimal pricing;湖南科技大学硕士学位论文
目 录
摘要..... i
Abstract..iii
第 1 章 绪论.......1
1.1 研究背景1
1.2 研究意义1
1.3 国内外研究现状...........2
1.3.1 闭环供应链的研究现状.2
1.3.2 B2C 环境下闭环供应链的研究现状.....3
1.4 文献评述5
1.5 本文研究的主要内容、创新点5
1.5.1 研究内容..5
1.5.2 创新点......6
第 2 章 遗传算法及其运用.......7
2.1 遗传算法的简介7
2.2 实数编码的遗传算法....8
2.3 多目标的遗传算法........8
2.4 多目标优化问题及 Pareto 最优解集. 11
2.4.1 多目标优化问题11
2.4.2 Pareto 最优解集12
2.5 遗传算法的运用..........14
第 3 章 闭环供应链产品的多目标优化定价模型.....17
3.1 模型描述..........17
3.2 符号说明..........18
3.3 基本假设..........18
3.4 闭环供应链的分散化决策模型(MS 情形)...........19
3.5 闭环供应链的集中化决策模型(C 情形)..20
3.6 模型的契约协调优化设计(SC 情形)........21
第 4 章 基于遗传算法的闭环供应链产品优化定价方法.....23
4.1 应用遗传算法进行优化定价的技术路线......23
4.1.1 适应度函数的确定....
。。。以上简介无排版格式,详细内容请下载查看